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Centrality 
 
 
Introduction 
 
Who is important in a group? Some people are important because of various personal 
attributes such as knowledge, drive or looks, or because of official title and 
responsibilities, such as President or CEO. However, individuals can also be important by 
virtue of the position they hold in a social network – i.e., their centrality.  
 
David Krackhardt () tells the story of a unionization drive in a Silicon Valley firm. The 
union came the organization and gave a presentation. There was definitely interest on the 
part of many of the workers, and one worker in particular was extremely excited about 
unionizing. The union made him their point man for the subsequent campaign. 
Eventually, there was a vote and the union lost by small margin. A look at the network of 
friendships among the workers (Figure xx) reveals something interesting about Hal, the 
union’s point man. Hal is really quite peripheral in the network. In contrast, Chris, whom 
the union never approached, was the informal leader of the employees – he was highly 
central in the friendship network. Chris was pro-union, but also very friendly with 
management, who were against unionization. When the election came, he abstained.  But 
had he been lobbied by the union, who could not only have voted for them, but persuaded 
many others.  
 
Centrality is a node property.1 Some people think of it in terms of the structural 
importance or prominence of the node. Others see it as an indicator of how well-
connected a node is – i.e., the extent to which its ties can potentially provide access to 
resources controlled by others in the network. Alternatively, one can see it in terms of 
how easily a node might influence the rest of the network. Many measures of centrality 
have been proposed in the literature, each measuring a different aspect of centrality. In 
this chapter we consider just a few of the most often used measures. 
 
For simplicity of exposition, the various measures are described in the context of 
undirected (i.e., symmetric) networks. Then, at the end of the chapter, there is a section 
on centrality in directed networks. Also, it should be noted that centrality is normally 

                                                 
1 Actually, Everett and Borgatti (19xx) have extended centrality to apply to groups of nodes in addition to 
individual nodes. But this topic is beyond the scope of this book. 



computed with respect to a single relation – if a dataset contains multiple relations for the 
same set of nodes, a separate set of centrality scores is computed for each relation. 
 
Degree Centrality 
 
Perhaps the simplest measure of centrality is degree, which is simply the number of ties 
that a node has. Degree centrality is an index of the visibility or exposure of a node in the 
network – i.e., the “risk” of receiving whatever is flowing through the network (whether 
it is information in a gossip network or an infection in a sexual network). In addition 
nodes with high degree in a relation such as trust are in a position to wield influence, 
since they are trusted by many nodes. 
 
Computing degree is straightforward using software packages like UCINET. As an 
example, we will use the CAMPNET dataset that comes with UCINET. These data are 
directed, so for this analysis, we symmetrize it first, using the maximum method. This 
means that we consider a tie to present between nodes A and B if either A B or B A. 
We call the symmetrized dataset SYMCAMPNET. 
 
As shown in Output x.1, the result of calculating degree is a column vector containing the 
centrality score for each node. In addition, UCINET calculates a normalized version of 
raw degree which is just a node’s degree divided by n-1 (the maximum possible) and 
multiplied by 100 (so that the numbers scale between 0 and 100). These values are shown 
in the column to the right of simple degree in Output x.1. 
 
Having computed degree, one would typically add it to a node-level database that 
contains other variables measured on the same nodes, such as gender, organizational 
rank, race, etc. We can then use conventional statistics to relate centrality to these other 
variables. For example, we might use a t-test to compare the degree centrality of men and 
women in an organization.  
 
We can run such a test in UCINET using the tools>statistics>vector>t-test procedure. 
First we run degree centrality on SYMCAMPNET, resulting in Output x.1, and then we 
run T-Test. The inputs to this procedure include both the centrality of each node and the 
gender of each node. It then computes the mean centrality for each gender and calculates 
the significance of the difference, using a permutation test. The result is shown in Output 
x.2. 
 
As mentioned earlier, degree centrality can be viewed as a kind of visibility. Nodes with 
high degree in an organizational network will tend to be the same ones that insiders will 
list as the important people in the group. An advantage of degree centrality is that it is 
basically interpretable in all kinds of networks, including disconnected networks. A 
disadvantage of degree centrality is that it is a relatively coarse measure of centrality. For 
example if a node is connected to 5 others that would be isolates if not for the tie to the 
focal node, the centrality of this node is no different from the centrality of a node that is 
connected to 5 others that well-connected themselves and in the center of a network. 
 



 
Eigenvector Centrality 
 
Eigenvector centrality can be described from a number of different perspectives 
(Bonacich, 1972). We present here is a kind of degree centrality in which we count the 
number of nodes adjacent to a given node (just like degree centrality), but weight each 
adjacent node by its centrality. The result is that each node’s centrality is proportional to 
the sum of centralities of the nodes it is adjacent to – in effect, a node is only as good as 
its network. 
 
We can interpret eigenvector centrality as a measure of popularity, in the sense that a 
node with high eigenvector centrality is connected to nodes who are themselves well-
connected. This contrasts with a node that might have many ties but they are to people 
who have no other ties. We can also view eigenvector centrality as a more sophisticated 
measure or risk. For example, consider the network of sexual ties in Figure x.1. Nodes A 
and B both have degree 1. But they don’t have the same level of risk because the node 
that B is having sex with is having sex with many others. Eigenvector centrality captures 
this difference and assigns B a higher score. 
 
Like degree, there is a normalized version of eigenvector centrality which divides the raw 
eigenvector score by the maximum possible score achievable in a network of the same 
size, and then multiplies by 100.  
 
If we use UCINET to calculate eigenvector centrality on the SYMCAMPNET dataset, we 
obtain the result shown in Output x.3. Note that, in this case, there is considerable 
agreement between degree centrality and eigenvector centrality (r = 0.xxx), which is not 
unusual. However, some nodes do show differences in relative centrality, as shown in the 
scatter diagram given in Figure x.1. 
 
An important limitation of eigenvector centrality is that it should not be used in 
disconnected networks as it will assign zeros to all members of the smaller components.2 
Furthermore, if a network has a bowtie structure such as shown in Figure x.2, the scores 
for all the nodes in the smaller subgroup will have uniformly lower scores than the nodes 
in the larger subgroup. This is not precisely a flaw since in fact the nodes in the smaller 
group are connected to nodes that are less well connected, but is something one might 
want to take account of, particularly in the case where the groups correspond to, say, 
organizational subunits and the size of the subunits is determined by a variable 
extraneous to the processes being researched.  
 
 
Closeness Centrality 
 

                                                 
2 The term “smaller” refers to both the number of nodes and the number of ties. In other words, if one 
component has fewer nodes, all of its members get zeros. If the components have the same number of 
nodes, the component with fewer ties gets zeros. 



Closeness centrality is defined as the total number of links separating a node from all 
others along the shortest possible paths. In other words, to calculate closeness, one begins 
by calculating, for each pair of nodes in the network, the length of the shortest path from 
one to the other (aka the geodesic distance). Then for each node, one sums up the total 
distance from the node to all other nodes.  
 
Closeness can be interpreted as an index of time-until-arrival of something flowing 
through the network. The greater the raw closeness score, the greater the time it takes on 
average for information originating at random points in the network to arrive at the node. 
Equally, one can interpret closeness as the potential ability of a node to reach all other 
nodes as quickly as possible. 
 
It is important to note that raw closeness is an inverse measure of centrality in that it is 
nodes with smaller scores that the most central (they are the least distant from other 
nodes). In fact, the UCINET programs labels raw closeness “farness” to remind the user 
to interpret the values correctly.  
 
Like degree and eigenvector centrality, there is a normalized version of closeness, and the 
normalized version reverses the values so that a larger number means that a node is more 
central. Specifically, the normalized version divides a node’s closeness score into n-1, 
and then multiplies by 100. Hence, a node that is adjacent to every other (such as the 
center of a star) will have a score of 100). 
 
If we calculate closeness centrality on the SYMCAMPNET dataset, we obtain the result 
shown in Output x.3. Note that the most central nodes (xx, yy) are not the same as 
obtained when running degree centrality.  
 
An important fact to note about closeness centrality is that it is inappropriate for 
disconnected networks (in which the distances between some pairs of nodes is 
undefined), and it is rarely useful in directed networks, but this is discussed more fully at 
the end of this chapter. It has also been frequently noticed that closeness centrality often 
exhibits little variance, which means it doesn’t strongly distinguish between the most 
central and least central nodes, and can fail to correlate highly with other variables. 
 
 
Betweenness Centrality 
 
Betweenness centrality measures how often a given node falls along the shortest path 
between two other nodes. More specifically, it is calculated for a given focal node by 
computing, for each pair of nodes other than the focal node, what proportion of all the 
shortest paths from one to the other pass through the focal node. These proportions are 
summed across all pairs and the result is a single value for each node in the network.  
 
Betweenness is zero for a given node when it never along the shortest path between any 
two others. It reaches its maximum value when the node lies along every shortest path 
between every pair of nodes. 



 
Betweenness is typically interpreted in terms of the potential for controlling flows 
through the network – i.e., playing a gate-keeping or toll-taking role. In a sense, nodes 
with high betweenness are in a position to threaten the network with disruption of 
operations.  
 
Programs like UCINET compute both raw betweenness and a normalized version that 
divides raw betweenness by the maximum score possible in a network of that size, and 
then multiplies by 100. The center of a star-shaped network will have a normalized 
betweenness score of 100. If we calculate betweenness centrality on the SYMCAMPNET 
dataset, we obtain the result shown in Output x.3. Note that … 
 
It is useful to note that, in general, the variance of betweenness is quite high, providing 
effective discrimination between nodes and potentially correlating well with other 
variables.  
 
It is also worth realizing that the ability to exploit a high betweenness position varies with 
the ease with which nodes can create ties. For example, suppose that a given node has 
high betweenness, meaning that many nodes need that node to reach other nodes via 
efficient paths. In principle, this node has power because it can threaten to stop 
transmitting, making nodes use less efficient paths to reach one another. But this threat 
only works if nodes cannot easily create new ties to go around the recalcitrant node. 
 
An excellent example is provided by the study of medieval Russian trade networks 
studied by Forrest Pitts (1979). He notes that in the 12th century, Moscow was just 
another principality identical in all respects to hundreds of others. Soon, however, it 
began to grow, outstripping the other principalities in the region. The question is why – 
was it good leadership or something more structural? Pitts notes that every principality 
was located on a river, which was used for trade. The rivers constitute highly durable and 
difficult-to-create ties in a network of principalities. In this network, Moscow turned out 
to have the highest betweenness centrality. It was therefore in an excellent position to 
make demands (e.g., exact tolls) on the traders. Since the traders could not easily create 
new ties (e.g., redirect rivers), Moscow could effectively enforce its demands. 
 
 
Directed Networks 
 
To optimally use the centrality measures discussed above with directed data, we modify 
most of them slightly.  
 
For degree centrality, we split the concept of degree into two separate measures: in-
degree and out-degree.  In-degree counts the number of incoming ties (arcs) whereas out-
degree counts the number of outgoing ties. Another way to look at it is that in-degree 
consists of the column sums of the adjacency matrix, and out-degree is the row sums of 
the matrix. As a check on the computation, it is useful to know that whereas any given 
node can have more (or less) in-degree than out-degree, the average in-degree for all 



nodes must, by mathematical necessity, equal the average out-degree. Depending on the 
social relation in question, we often interpret out-degree as the “gregariousness” of the 
node and the in-degree as the “prestige” of the node. It is not unusual to regard node 
gregariousness with some suspicion as it may reflect differences in interpretation by 
different respondents (e.g., one respondent views everyone as “friend” while another 
respondent reserves the term for only the closest ties).  
 
For eigenvector centrality, there are a couple of useful approaches for handling directed 
data. First of all, the mathematical notion of eigenvectors does apply to non-symmetric 
adjacency matrices. However, for many directed networks, the solutions require complex 
numbers (the kind that contain both a real and an imaginary component). One class of 
networks which are guaranteed to have real-valued solutions is the set of strongly 
connected networks (these are directed networks in which every node can reach every 
other node by some directed path). So for these networks we can compute two 
eigenvectors: a right eigenvector (similar to out-degree) and a left eigenvector (similar to 
in-degree). If the relation being measured is who gives advice to whom, the right 
eigenvector can be seen as a measure of potential to influence others via both direct and 
indirect ties. A node has a high score on the right eigenvector if it has many ties to nodes 
that themselves have many ties to others (who have many ties … etc). The left 
eigenvector can be seen as a measure of risk of being influenced (or infected) by others. 
A node has a high score if it receives ties from many nodes who themselves receive many 
ties from nodes who receive … and so on.  
 
As an example, consider the data presented by Casciaro () on investing relations among 
Italian banks. The data consist of a matrix X in which xij indicates the percentage of bank 
j’s shares that are owned by bank i. The network is shown in figure xx. Table  
 
A closely related approach is the method of Katz (), which Burt () called prominence. In 
this method, we start by dividing each value in the adjacency matrix by the row sum, so 
that after normalization each row adds to 1. The purpose of this is strictly technical: it 
provides a mathematical guarantee that the iterative process we describe next will 
converge on the desired solution. After some additional transformations of the matrix, the 
following iterative process is begun: First, we sum the columns, just as if we were 
computing in-degree. This produces our first order estimate of the prominence of each 
node. Then we recalculate the sum, but this time we weight each value by the first-order 
prominence scores. This gives a second-order set of estimates in which a high score 
indicates that a node is chosen by (many) people who are themselves often chosen. This 
process is repeated until the relative proportions of scores stop changing. The result is a 
more nuanced version of in-degree centrality in which a node is prominent if it is chosen 
by many prominent nodes.  
 
The one problem with this method is that the normalization of rows does change the data 
in important ways. The ties of gregarious nodes will be weighted downward, while the 
ties of nodes with little out-degree will be weighted upward. This is reasonable only 
when having a lot of ties implies giving each one less attention.  
 



A different approach that does not require normalization of the rows is that of hubs and 
authorities. Hubs are nodes that send ties to nodes that have lots of incoming ties. 
Authorities are nodes that receive ties from nodes that have lots of outgoing ties. In this 
approach, each node receives two scores: one that reflects how much of a hub it is, and 
one that indicates how much of an authority it is. The scores are related in that the a 
node’s hub score is proportional to the sum of the authority scores of the nodes it sends 
ties to, and a node’s authority score is proportional to the sum of the hub scores of the 
nodes that point to it.  
 
For closeness centrality, we adopt the same strategy and split the concept into in-
closeness and out-closeness. The in-closeness variable measures the extent to which a 
node is easily reached by others – i.e., there are short directed paths from others to the 
node. The out-closeness variable measures the extent to which a node can easily reach 
others – i.e., the paths going from the node to all others are relatively short. 
 


